python3期货数据分析
1. 金融需要学python爬虫还是数据分析
答案是都要学
需要使用python爬虫抓取数据再进行数据分析
一般培训数据分析都会教授爬虫的运用的
希望可以帮到你
2. 期货分析主要要关注那些数据到什么地方可以找到
技术面分析只关心期货市场的数据,这些数据是价格 成交量和持仓量。这三方面对数据不仅都是即时公开的而且都是客观的。如果将这些数据按照时间顺序描绘出来,就可以形成图形或图表,技术分析就是针对这些图形或图表进行分析和研究,以预测期货市场价格的走势,其实,在利用这些数据的性质上技术分析和基本面分析正好是相反。基本面分析是关心的是期货市场以外的数据
技术分析的数据在行情软件上都可以查到
3. 期货数据分析软件
没有不存在风险的投资,早上吃个早点还可能拉肚子呢,所以一定要看平台是否有资质是否正规。据了解有家天发(香港)期货是经香港证监会批准成立的,持有合法牌照,能交易大多数期货产品。他们开发了自己的客户端软件,在手机或电脑上安装后,能进行交易,也能学习和模拟。
4. 如何用Python做金融数据分析
所说所有的变量都是对象。 对象在python里,其实是一个指针,指向一个数据结构,数据结构里有属性,有方法。
5. python数据分析的包 哪些
IPython
IPython 是一个在多种编程语言之间进行交互计算的命令行 shell,最开始是用 python 开发的,提供增强的内省,富媒体,扩展的 shell
语法,tab 补全,丰富的历史等功能。IPython 提供了如下特性:
更强的交互 shell(基于 Qt 的终端)
一个基于浏览器的记事本,支持代码,纯文本,数学公式,内置图表和其他富媒体
支持交互数据可视化和图形界面工具
灵活,可嵌入解释器加载到任意一个自有工程里
简单易用,用于并行计算的高性能工具
由数据分析总监,Galvanize 专家 Nir Kaldero 提供。
GraphLab Greate 是一个 Python 库,由 C++ 引擎支持,可以快速构建大型高性能数据产品。
这有一些关于 GraphLab Greate 的特点:
可以在您的计算机上以交互的速度分析以 T 为计量单位的数据量。
在单一平台上可以分析表格数据、曲线、文字、图像。
最新的机器学习算法包括深度学习,进化树和 factorization machines 理论。
可以用 Hadoop Yarn 或者 EC2 聚类在你的笔记本或者分布系统上运行同样的代码。
借助于灵活的 API 函数专注于任务或者机器学习。
在云上用预测服务便捷地配置数据产品。
为探索和产品监测创建可视化的数据。
由 Galvanize 数据科学家 Benjamin Skrainka 提供。
Pandas
pandas 是一个开源的软件,它具有 BSD 的开源许可,为 Python
编程语言提供高性能,易用数据结构和数据分析工具。在数据改动和数据预处理方面,Python 早已名声显赫,但是在数据分析与建模方面,Python
是个短板。Pands 软件就填补了这个空白,能让你用 Python 方便地进行你所有数据的处理,而不用转而选择更主流的专业语言,例如 R 语言。
整合了劲爆的 IPyton 工具包和其他的库,它在 Python 中进行数据分析的开发环境在处理性能,速度,和兼容方面都性能卓越。Pands
不会执行重要的建模函数超出线性回归和面板回归;对于这些,参考 statsmodel 统计建模工具和 scikit-learn 库。为了把 Python
打造成顶级的统计建模分析环境,我们需要进一步努力,但是我们已经奋斗在这条路上了。
由 Galvanize 专家,数据科学家 Nir Kaldero 提供。
PuLP
线性编程是一种优化,其中一个对象函数被最大程度地限制了。PuLP 是一个用 Python
编写的线性编程模型。它能产生线性文件,能调用高度优化的求解器,GLPK,COIN CLP/CBC,CPLEX,和GUROBI,来求解这些线性问题。
由 Galvanize 数据科学家 Isaac Laughlin 提供
Matplotlib
matplotlib 是基于 Python 的
2D(数据)绘图库,它产生(输出)出版级质量的图表,用于各种打印纸质的原件格式和跨平台的交互式环境。matplotlib 既可以用在 python 脚本,
python 和 ipython 的 shell 界面 (ala MATLAB? 或 Mathematica?),web 应用服务器,和6类 GUI
工具箱。
matplotlib 尝试使容易事情变得更容易,使困难事情变为可能。你只需要少量几行代码,就可以生成图表,直方图,能量光谱(power
spectra),柱状图,errorcharts,散点图(scatterplots)等,。
为简化数据绘图,pyplot 提供一个类 MATLAB 的接口界面,尤其是它与 IPython
共同使用时。对于高级用户,你可以完全定制包括线型,字体属性,坐标属性等,借助面向对象接口界面,或项 MATLAB 用户提供类似(MATLAB)的界面。
Galvanize 公司的首席科学官 Mike Tamir 供稿。
Scikit-Learn
Scikit-Learn 是一个简单有效地数据挖掘和数据分析工具(库)。关于最值得一提的是,它人人可用,重复用于多种语境。它基于
NumPy,SciPy 和 mathplotlib 等构建。Scikit 采用开源的 BSD 授权协议,同时也可用于商业。Scikit-Learn
具备如下特性:
分类(Classification) – 识别鉴定一个对象属于哪一类别
回归(Regression) – 预测对象关联的连续值属性
聚类(Clustering) – 类似对象自动分组集合
降维(Dimensionality Rection) – 减少需要考虑的随机变量数量
模型选择(Model Selection) –比较、验证和选择参数和模型
预处理(Preprocessing) – 特征提取和规范化
Galvanize 公司数据科学讲师,Isaac Laughlin提供
Spark
Spark 由一个驱动程序构成,它运行用户的 main 函数并在聚类上执行多个并行操作。Spark
最吸引人的地方在于它提供的弹性分布数据集(RDD),那是一个按照聚类的节点进行分区的元素的集合,它可以在并行计算中使用。RDDs 可以从一个 Hadoop
文件系统中的文件(或者其他的 Hadoop 支持的文件系统的文件)来创建,或者是驱动程序中其他的已经存在的标量数据集合,把它进行变换。用户也许想要 Spark
在内存中永久保存 RDD,来通过并行操作有效地对 RDD 进行复用。最终,RDDs 无法从节点中自动复原。
Spark 中第二个吸引人的地方在并行操作中变量的共享。默认情况下,当 Spark
在并行情况下运行一个函数作为一组不同节点上的任务时,它把每一个函数中用到的变量拷贝一份送到每一任务。有时,一个变量需要被许多任务和驱动程序共享。Spark
支持两种方式的共享变量:广播变量,它可以用来在所有的节点上缓存数据。另一种方式是累加器,这是一种只能用作执行加法的变量,例如在计数器中和加法运算中。
6. python可以读取到国内期货历史tick数据吗
历史tick数据是需要花钱买的。和用什么软件没关系。
7. python金融大数据分析 百度云盘pdf
基础入门到精通学习教程永久 免费无 解压码
8. 期货数据分析工具
最简单的是用EXCEl来做数据的统计分析,可以从Wind或其他软件调取数据,这个是最简单的。
期货目前有一些程序化软件,如Multicharts、TB等程序化软件,里面内嵌策略分析模块,可以做回测,这样把自己的思想写进去,然后设置后参数,就可以回测,可以检验自己模型的优劣。这个是目前比较主流的方法,通常会适合中等水平的客户用。
专门的工具,如C++、MATLAB 、R软件等,针对计算机专业、物理等其他专业的,可以实现数据接口技术,根据自己的思想完全编写软件,这样分析数据,更得心应手!
9. 商品数据分析三个常用指标
(一)、销售数据之维度
1、商品
商品是零售分析的最细维度之一,大部分的指标都依附商品来做明细的记录,同时很多维度也是通过商品进行交叉分析。
2、客户
客户是销售对象,包括会员。客户所在地和区域有关联。
3、区域
区域是地理位置。从全球视角看:洲---国家---区;从国家视角看:区——省/市——县/ 区—镇/乡/村,一般按正式行政单位划分。
4、时间
时间是进行数据分析非常重要的维度,分析的角度有公历角度和农历角度。其中, 公历角度:年——季度——月——日——时段(每2小时为一个段);星期、公历节假日。农历角度:年——节气——日——时刻;农历节假日。
(二)、销售数据之指标
1、销售数量
客户消费的商品的数量。
2、含税销售额
客户购买商品所支付的金额。
3、毛利
毛利=实际销售额-成本。
4、净利
净利=去税销售额-去税成本。
5、毛利率
销售毛利率是毛利占销售收入的百分比,也简称为毛利率,其中毛利是销售收入与销售成本的差。
毛利率=(毛利/实际销售额)×100%。
6、周转率
周转率和统计的时间段有关。周转率=(销售吊牌额/库存金额)×100%。
7、促销次数
促销次数有宏观概念上的,也有微观概念上的。宏观上,是指一个销售单位中一段 时间内发动促销的次数,或某个供应商的商品在一段时间内参与促销的次数;微观层面上,是表示一个单品在一段时间内参与促销的次数。
8、交易次数
客户在POS 点上支付一笔交易记录作为一次交易。
9、客单价
客户在一次交易中支付的金额总和称为客单价。
客单价=销售额/交易次数。
10、周转天数
周转天数=库存金额/销售吊牌额。周转天数越长,表示经营效率越低或存货管理越差;周转天数越短,表示经营效率越高或存货管理。
11、退货率
退货率=退货金额/进货金额(一段时间);用于描述经营效率或存货管理情况的指标,与时间有关。
12、售罄率
售罄率=销售数量/进货数量。
13、库销比
库销比=期末库存金额/(本期销售牌价额/销售天数*30)
(只有在单款SKU 计算中可用数量替代金额。)
14、连带率
连带率=销售件数/交易次数。
15、平均单价
平均单价=销售金额/销售件数。
16、平均折扣
平均折扣=销售金额/销售吊牌额
17、SKU(深度与宽度)
英文全称为 stock keeping unit, 简称SKU,定义为保存库存控制的最小可用单位,例如纺织品中一个SKU 通常表示一个规格,颜色,款式),即货号,例:AMF80570-1。
18、期货
所谓期货,一般指期货合约,就是指由期货交易所统一制定的、规定在将来 某一特定的时间和地点交割一定数量标的物的标准化合约 。服装行业上具体指订货会上所订购且分期交付的货品。
19、坪效
就是指终端卖场1平米的效率,一般是作为评估卖场实力的一个重要标准。
坪效=销售金额/门店营业面积(不包含仓库面积)。
20、促销商品
指促销活动期间指定的商品,其价格低于市场同类的商品。包括DM 商品,开店促销,普通促销货(特价),不包含正常降价。
(三)、销售数据之分析方法
1、直接数据的分析。
2、间接数据的组合分析。
10. 关于期货数据分析
期货合约反映了对未来的预期,到期日不同,对合约价格影响很大。农业期货在同一时间会有多个合约,考虑到主力合约,到期日等各种因素,分析单个合约显然不科学。
目前常用的做法一个是根据现货价格指数来判断。
如果一定要根据期货价格判断的话,可以将交易中的几个合约按照持仓量加权平均的办法计算出一个总的期货指数,
比如,假设现在白糖一共有2个合约,白糖1价格是55元,持仓量是10000,白糖2价格是50元,持仓量是5000,那白糖指数价格就是(55*10000+50*5000)/(10000+5000)=53.33
大智慧等软件都支持数据导出到Excel,设个公式简单计算一下就行了。
这样,不管是否有合约到期,都不会对指数产生影响,能够比较客观得反映期货的实际价格。
如果找不到历史数据,嘿嘿,你懂的……