期货量化投资与人工智能
⑴ 量化投资的主要方法和前沿进展
量化投资是通过计算机对金融大数据进行量化分析的基础上产生交易决策机制。设计金融数学和计算机的知识和技术,主要有人工智能、数据挖掘、小波分析、支持向量机、分形理论和随机过程这几种。
1.人工智能
人工智能(Artificial Intelligence,AI)是研究使用计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及计算机科学、心理学、哲学和语言学等学科,可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。
从思维观点看,人工智能不仅限于逻辑思维,还要考虑形象思维、灵感思维才能促进人工智能的突破性发展,数学常被认为是多种学科的基础科学,因此人工智能学科也必须借用数学工具。数学不仅在标准逻辑、模糊数学等范围发挥作用,进入人工智能学科后也能促进其得到更快的发展。
金融投资是一项复杂的、综合了各种知识与技术的学科,对智能的要求非常高。所以人工智能的很多技术可以用于量化投资分析中,包括专家系统、机器学习、神经网络、遗传算法等。
2.数据挖掘
数据挖掘(Data Mining)是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的,但又是潜在有用的信息和知识的过程。
与数据挖掘相近的同义词有数据融合、数据分析和决策支持等。在量化投资中,数据挖掘的主要技术包括关联分析、分类/预测、聚类分析等。
关联分析是研究两个或两个以上变量的取值之间存在某种规律性。例如,研究股票的某些因子发生变化后,对未来一段时间股价之间的关联关系。关联分为简单关联、时序关联和因果关联。关联分析的目的是找出数据库中隐藏的关联网。一般用支持度和可信度两个阈值来度量关联规则的相关性,还不断引入兴趣度、相关性等参数,使得所挖掘的规则更符合需求。
分类就是找出一个类别的概念描述,它代表了这类数据的整体信息,即该类的内涵描述,并用这种描述来构造模型,一般用规则或决策树模式表示。分类是利用训练数据集通过一定的算法而求得分类规则。分类可被用于规则描述和预测。
预测是利用历史数据找出变化规律,建立模型,并由此模型对未来数据的种类及特征进行预测。预测关心的是精度和不确定性,通常用预测方差来度量。
聚类就是利用数据的相似性判断出数据的聚合程度,使得同一个类别中的数据尽可能相似,不同类别的数据尽可能相异。
3.小波分析
小波(Wavelet)这一术语,顾名思义,小波就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与傅里叶变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了傅里叶变换的困难问题,成为继傅里叶变换以来在科学方法上的重大突破,因此也有人把小波变换称为数学显微镜。
小波分析在量化投资中的主要作用是进行波形处理。任何投资品种的走势都可以看做是一种波形,其中包含了很多噪音信号。利用小波分析,可以进行波形的去噪、重构、诊断、识别等,从而实现对未来走势的判断。
4.支持向量机
支持向量机(Support Vector Machine,SVM)方法是通过一个非线性映射,把样本空间映射到一个高维乃至无穷维的特征空间中(Hilbert空间),使得在原来的样本空间中非线性可分的问题转化为在特征空间中的线性可分的问题,简单地说,就是升维和线性化。升维就是把样本向高维空间做映射,一般情况下这会增加计算的复杂性,甚至会引起维数灾难,因而人们很少问津。但是作为分类、回归等问题来说,很可能在低维样本空间无法线性处理的样本集,在高维特征空间中却可以通过一个线性超平面实现线性划分(或回归)。
一般的升维都会带来计算的复杂化,SVM方法巧妙地解决了这个难题:应用核函数的展开定理,就不需要知道非线性映射的显式表达式;由于是在高维特征空间中建立线性学习机,所以与线性模型相比,不但几乎不增加计算的复杂性,而且在某种程度上避免了维数灾难。这一切要归功于核函数的展开和计算理论。
正因为有这个优势,使得SVM特别适合于进行有关分类和预测问题的处理,这就使得它在量化投资中有了很大的用武之地。
5.分形理论
被誉为大自然的几何学的分形理论(Fractal),是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。它与动力系统的混沌理论交叉结合,相辅相成。它承认世界的局部可能在一定条件下,在某一方面(形态、结构、信息、功能、时间、能量等)表现出与整体的相似性,它承认空间维数的变化既可以是离散的也可以是连续的,因而极大地拓展了研究视野。
自相似原则和迭代生成原则是分形理论的重要原则。它表示分形在通常的几何变换下具有不变性,即标度无关性。分形形体中的自相似性可以是完全相同的,也可以是统计意义上的相似。迭代生成原则是指可以从局部的分形通过某种递归方法生成更大的整体图形。
分形理论既是非线性科学的前沿和重要分支,又是一门新兴的横断学科。作为一种方法论和认识论,其启示是多方面的:一是分形整体与局部形态的相似,启发人们通过认识部分来认识整体,从有限中认识无限;二是分形揭示了介于整体与部分、有序与无序、复杂与简单之间的新形态、新秩序;三是分形从一特定层面揭示了世界普遍联系和统一的图景。
由于这种特征,使得分形理论在量化投资中得到了广泛的应用,主要可以用于金融时序数列的分解与重构,并在此基础上进行数列的预测。
6.随机过程
随机过程(Stochastic Process)是一连串随机事件动态关系的定量描述。随机过程论与其他数学分支如位势论、微分方程、力学及复变函数论等有密切的联系,是在自然科学、工程科学及社会科学各领域中研究随机现象的重要工具。随机过程论目前已得到广泛的应用,在诸如天气预报、统计物理、天体物理、运筹决策、经济数学、安全科学、人口理论、可靠性及计算机科学等很多领域都要经常用到随机过程的理论来建立数学模型。
研究随机过程的方法多种多样,主要可以分为两大类:一类是概率方法,其中用到轨道性质、随机微分方程等;另一类是分析的方法,其中用到测度论、微分方程、半群理论、函数堆和希尔伯特空间等,实际研究中常常两种方法并用。另外组合方法和代数方法在某些特殊随机过程的研究中也有一定作用。研究的主要内容有:多指标随机过程、无穷质点与马尔科夫过程、概率与位势及各种特殊过程的专题讨论等。
其中,马尔科夫过程很适于金融时序数列的预测,是在量化投资中的典型应用。
现阶段量化投资在基金投资方面使用的比较多,也有部分投资机构合券商的交易系统应用了智能选股的技术。
⑵ 乔治·索罗斯写过一本叫《量化投资》的书吗
一下内容纯手打
证券分析方法主要分三种:
一是基本面分析,代表作《证券分析》《价值投资》,代表任务“巴菲特”;
二是技术面分析,代表做《趋势技术分析》《道琼斯理论》等,注重短期投资,索罗斯属于短期投机类型,但是没有任何资料显示他的投资流派属于纯粹的技术面分析,可能的情况是上述两种都有。今年的而贝尔经济学得主法玛提出的”有效市场假说“某一种程度上,否定了技术面分析。
三是量化分析,美国近几十年兴起的一种方法,典型的代表人物是西蒙斯。
中国国内的量化投资的研究还比较少,量化投资的基金以及机构也不够普遍,切主要集中于香港地区。原因之一是,国内金融金融市场没有完全开放,金融产品匮乏。美国市场的金融产品多达几万种,而国内只有两百多种。
关于量化投资的书,国内国外都有很多,主要集中与国外,国内学者大多是对国外技术的学习。当然,如果你是初学者,建议你还是从国内的相关书籍开始学起。
如果有一本书,叫《量化投资》,我敢保证你看了一定学不到什么东西,丁鹏的《量化投资》就是这样,只是对现在主要方法以及模型的简单介绍。用于同行业交流也许会有些价值。书籍内容从:量化选股、量化择时、到套利什么什么的,基本上都是简单的介绍,可以当作课外读物,了解一下什么叫量化投资。如果你真的想学到什么东西,直接网络文库:量化选股、多因子选股等词,你会看到无数国内证券机构对市场的量化研究。而且资料详细。可是,你学不到最根本的原理。
原因如下:
进行量化分析,必须至少具备两种能力:
一、扎实且足够的数学、统计学基础,用于理论上的金融建模;
二、能够使用相关计量软件进行数据分析或者模型求解等。
这两个要求一般人很难到达,所以证券从业的教材认为难度大是量化投资的一个很大局限性。
如果楼主对量化投资有兴趣,我可以推荐一些教材给你:
如果仅仅是想了解一下: 丁鹏《量化投资》,书很贵,个人认为没什么实用价值。可以有个简单的系统的认识;
如果是想学习并且能在实际中运用,建议如下:
数学方面:
《微积分》 到高级《高级微积分》
《线性代数》《非线性代数》
《概率论与数理统计》《概率、随机变量、随机过程》
《离散数学》《运筹学》《统计学》
金融理论上
《计量经济学基础》《计量经济分析》
《数量金融学》《金融时间序列分析》
。。。。还有很多很多
以及其他金融知识基础
建模方面
这类的书,我看的不多哦,你自己网络一下,或者找个图书馆看看
计算机软件
C 和 C++ 至少学一个,SQL 建议学一点
建模软件主要有:MATHEMATICA MATLAB SAS SAC R Eviews GAMS 等等等等,终于哪些海外基金用的是哪一种,或者是不是自己做的专用软件,我就不知道了。
不过,上述的软件,肯定是可以满足个人的研究需求的。这个,你选几种学一学还是可以的。
一个人,想要精通上述全部,应该是很难的,所以,注定了,量化分析的方法,单个的普通人很难完成。
量化投资起源与上世纪美国政府大幅度削减了对物理航天业经费自持,导致很多搞火箭的科学家、数学家下岗。于是他们流入金融行业(收入高),利用自己对数学、计算机的优势,使用原先用于火箭的建模预测证券市场,发现有着显著成效。当然,这些模型的前提是,现代金融理论的奠基,以及数量金融的发展。
因此,我个人对量化投资的理解是:金融界的火箭科学家,传统的分析方法,只用看某一或某几个指标,根据历史经验或者主观的客观的XXOO判断证券的未来走势,但是量化分析,首先建立合理的数学模型,然后借助计算机运用某些XX的算法,分析求解,难度相对于传统的方法难很多。
如果你想比较浅显的掌握,用于投资决策的参考
那量化分析,也没有想想中的那么高深,它本质上是一种金融的建模,本质上,常用的方法还是统计专业的那几个 ,什么 回归分析,线性规划 ,相关性,时间序列等等等。。。我看了丁鹏的书,大致上认为他是用了这些方法。所以你只用把应用数学学好就好了。
还有一些像遗传算法、神经网络这些他的书里面也提到了,属于现代算法,这些方法比较小,难度大,但是我猜只有学术界会用这些方法,因为现代算法在实际运用中还不够成熟,预测经常不准确。
表述有些乱,不过大致也只能写成这样了。
最后:和量化分析相关的专业主要有三个:
金融专业:金融工程;
数学专业:统计、应用数学;
计算机专业
这些专业的就业方向是可以面向量化分析的
⑶ 什么是量化投资
量化投资指的是一种投资方法,它是指通过数量化方式或计算机程序化发出买卖指令,以得到稳定收益为目标的交易方式。量化投资是一种定性思想的量化应用,它对大量的指标数据进行分析,得出一些有说服力的数据结论,然后通过计算机技术进行数学建模,并进行量化分析,从而得出一个比较契合实际的投资策略。
量化投资是指通过数量化方式及计算机程序化发出买卖指令,以获取稳定收益为目的的交易方式。在海外的发展已有30多年的历史,其投资业绩稳定,市场规模和份额不断扩大、得到了越来越多投资者认可。从全球市场的参与主体来看,按照管理资产的规模,全球排名前四以及前六位中的五家资管机构,都是依靠计算机技术来开展投资决策,由量化及程序化交易所管理的资金规模在不断扩大。
⑷ AIE智能自动量化自动炒币机器人靠谱吗
智能自动量化自动叉臂机器能靠谱吗?这个的话还算是靠谱吧,因为现在的科技是越来越发达的。
⑸ AlphaGo又赢了 量化投资是万能的吗
AlphaGo是人工智能。量化投资并不是万能的,里面有很多条件限制。
⑹ 期货程序化交易中的基本面可以量化吗 能不能把基本面量化成交易模型
基本面交易很大程度上也是靠经验,要靠多年的积累,因为基本面交易也包含了很多因素,包括供求平衡关系、市场结构、微观因素、宏观因素等等有很多因素。这个交易经验或者说交易人,这种交易经验可复制性又非常差,就是想带一个成熟的交易员要经历很长的时间,如果靠基本面交易,特别是靠商品期货,一个人所带的资金就很有限,到一定规模我就很难以再扩大。
在这种市场情况下,要想开展一部分程序化交易或者量化投资,一定要有所区别,因为现在市场上由于期货公司或者现在期货行业发展的现状,很多年轻人快速进入到量化投资这个领域,对基本面分析或者说交易经验比较少的情况下,做出来的交易模型大部分是纯数学化的模型。实际上量化做模型的背后有大量的数据采集,这个数据采集也包含了很多宏观、微观方面的一些数据,将这些数据整理、加工进行人工智能的分析。
⑺ 量化投资和人工智能可以结合吗之前看过一篇人工智能股市三大猜想的文章,想再深入了解一下
可以把两个概念加到一块,进行筛选,望采纳
⑻ 做量化交易一般用什么软件
需要懂一些数学模型,比如统计分析、人工智能算法之类的,他的本质是利用数学模型分析数据潜在的规律寻找交易机会,并利用计算机程序来搜寻交易时机以及完成自动化交易。并没有现成的软件可以做这个,因为它需要一个搭建一个专业的平台,这不是一个人可以完成的。
国内有一些软件,比如大智慧提供数量分析,还有一些软件提供股票、期货的程序化交易。但是实际上这并不是真正意义上的量化交易。事实上,做一款纯粹的适合个人投资者的量化投资软件,难度是非常大的,因为量化策略并不想传统的基本面、技术面那样存在已有既定的必然规律。他需要跨越多学科,多领域去挖掘数据的规律,然后利用得出的规律进行交易。但是不同时间、空间的数据的潜在规律并不一致,所以对量化过程进行标准化是一件很难完成的事情。
如果是计算机或者数学专业的人士,可以考虑使用C、C++、SQL等语言,其他的可以使用MATLAB/SAS 等软件。不管是哪一种软件,要实现量化交易,肯定是需要一定的建模基础和编程基础的,其中最重要的东西是数学能力。